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Special States in the Spin-Boson Model 
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For the spin-boson model we numerically exhibit special microscopic initial 
states that evolve, under pure quantum dynamics, from one macroscopically 
well-defined state to another. This is unusual in that typical states of the model 
evolve to superpositions of macroscopically different states. Although the 
mathematical rationale for the existence of the special states is not clear, that 
existence reflects favorably on a proposed theory of quantum measurement. 

KEY WORDS: Spin-boson model; quantum measurement theory; quantum 
decay. 

1. I N T R O D U C T I O N  

Several interrelated issues are addressed here. At the mathemat ica l  level we 
repor t  the existence of  special microscopic  states of  a "large" system having 
the proper ty  that  their dynamica l  evolut ion leads to outcomes different 
from those of  typical  microscopic  states. Physically,  the existence of  these 
"special" states reflects favorably on a p roposed  statistical mechanics-based 
resolut ion of  the problems  of  quan tum measurement  theory.~ ~ That  resolu- 
t ion is based on microscopic  states of  a system (including appara tus  and 
environment)  which under  exact microscopic  time evolut ion lead to 
microscopic  states that  cor respond to a single macroscopic  state, ra ther  
than (as in "cat"  exper iments)  to superposi t ions  of macroscopical ly  
different states. Wi th  such "special" states as initial condi t ions there is no 
longer the p rob lem of el iminat ing or explaining away the mult ipl ici ty 
of macroscopical ly  possible outcomes,  but  there are other  questions,  
par t icular ly  regarding why nature  should select rare initial condit ions.  F o r  
those quest ions and for their relat ion to the foundat ions  of statistical 
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mechanics see ref. 1. This article is concerned with the technical issue of the 
existence of "special" states. 

That issue is not trivial, even beyond the occasional difficulty of iden- 
tifying degrees of freedom for the "specializing." The states may also be 
required to disentangle. Only recently--via EPR-type experiments--has the 
profound effect of wave function entanglement begun t o  be explored, 
although Schr6dinger long ago described entanglement as the essential 
feature of quantum mechanicsJ 2) In the von Neumann formulation, pure 
quantum evolution [i.e., @ ~exp(- iHt)q;]  only seems to entangle more 
and more, with disentanglement occurring by collapse (or whatever). In the 
theory of ref. 1, which allows only pure quantum evolution, there must be 
disentanglement as well as entanglement. 

In this article we study the spin-boson model. It is not the full 
Hamiltonian of some large apparatus, but it has been extensively used for 
the realistic description of practical, physical systems. It has played a 
prominent role in the study of Josephson junctions, including situations 
where quantum measurement-related issues arise. But it has also been 
applied to other systems, and serves at the intersection of classical 
mechanics (as a model of dissipation), quantum mechanics, and statistical 
mechanics.13-5) 

2. THE S P I N - B O S O N  M O D E L  

The Hamiltonian is 

(2.1) 

where the two-level "spin" operators are the matrices a~ and ax, the bosons 
have frequencies COk, the spin-boson coupling is proportional to ilk, the 
up-down coupling is given by A, and the unperturbed level energy 
difference is e. 

A "special" state is manifested in this context in the following way. The 
observed variable is the spin state, up or down. The microscopic variables 
are the bosons. Fix a time T during which the system is supposed to evolve 
under the Hamiltonian (2.1) only, and subsequent to which it is coupled to 
a larger environment. In this article we assume that it is the larger environ- 
ment that fixes the spin-boson oscillations irreversibly. Using thermal 
averaging or other bland initial conditions, the system would go from an 
initial up state to a superposition of up and down states at that later time 
T. This would be a "grotesque" state whose potential existence is at the 
heart of the quantum measurement problem. The claim of ref. 1 is that 
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there are par t i cu la r - -no t  "bland,"  but "special"--init ial  boson states such 
that  the state at time T is entirely spin-up, and other "special" states such 
that  it is entirely down. 

Informat ion about  such states can be extracted as follows: The initial 
state lr is of the form 

14'o> = I+  > |  X I,,kl In~,, nk,,...> 

Under  the full Hamil tonian  it evolves to I~r )=exp( - iHT) I~b0) .  The 
physically impor tant  quanti ty is the norm (squared) of  the port ion of the 
vector that remains "up." In ordinary parlance this is the probabil i ty of 
nondecay. The Hilbert  space consists of tensor products  of  boson states 
and up and down spin states. Let P be the projection on the subspace with 
spin up. We define p r  = liP I@r)ll 2. 

The existence of a "special" state corresponds to states I~bo) for which 
Pr is either zero or one. As discussed in ref. 1, we seek states for which that 
quanti ty can be made close to those ideals. We rewrite P r, 

p r  = ( ( ew l P~r> = (q~o[ exp( iHT) PP e x p ( - i H T )  [q~o) 

= (~bol A~rAr Ir -- (r  a T  Ir 

where we have used Ir = P I~0), and have defined 

A T = P e x p ( - i H T ) P ,  Br=A*rAT 

It follows that  the existence of "special" states is equivalent to the existence 
of spin-up eigenvectors with eigenvalues zero or one of the opera tor  Br. It 
is easy to see that  the eigenvalues of  Br  lie in the interval [0, 1 ]. 

3. A N A L Y T I C  M E T H O D S  

A "special" state solves a two-time boundary  value problem in 
quan tum mechanics)  6~ Although remarks  of Eddington on the interpreta- 
tion of quan tum mechanics led Schr6dinger to consider two-time boundary  
value problems as early as 1932, tT~ in fact what  he looked at was the 
diffusion equation,  not the quantum two-t ime boundary  value problem. To  
formulate such a boundary  value problem one may  specify an initial state 
in a subspace ~ of Hilbert  space and a final state in a subspace Jt~2. If 
n = d i m ( ~ ) + d i m ( J ~ 2 ) - d i m ( o - ~ ) > 0 ,  then there will be at least an 
n-dimensional family of  solutions 2 (by parameter  counting). However,  the 

-" For given H and 7. a "solution" is ~b s ~ such that exp( -iHTI~ e #[;. 
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interesting case is where n is zero or negative and one manages a solution 
or near solution anyway. (Other two-time quantum boundary problems 
are given in refs. 8-10.) 

The time dependence of the spin-boson model has been intensively 
studied. 13'5~ The "blip" description is based on the same mathematical prin- 
ciple as Feynman's checkerboard path integral or Kac's treatment of the 
telegrapher equation. I'1'~2~ Unfortunately, even with so much control I 
have not found a way to address the question of"special" states. Differen- 
tial equation techniques can be useful, ~3~ but they have not been extended 
to this problem. 

4. N U M E R I C A L  RESULTS ON "SPECIAL" STATES 

We study the eigenvalues of B r  numerically by truncating the Hilbert 
space. First we only consider a few bosons, and second they are given a 
cutoff by setting a maximum boson number Neutofr (which may vary with 
09). In general, reducing degrees of freedom makes the finding of "special" 
states m o r e  difficult. 

In Fig. 1 we show the eigenvalues of B r for various T for a 
Hamiltonian involving only a single boson. For Fig. 1 the Hamiltonian has 

Fig. 1. One-boson special states. For each time step, the circles lying above that value of the 
time represent the eigenvalues of Br-~ A trA r. The dotted lines do not represent the evolution 
of any particular individual state (a different set of eigenvectors occurs for each time stepl. 
The solid line is the average of the eigenvalues of B r. States whose circles lie near the top of 
the graph represent special states for nondecay, and those near the bottom are special states 
for decay. 
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parameter values co = 0.9, e = 1, A = 0.6, and ,8 = 0.2. The boson cutof f  is 
N~<31. 

The graph provides the following information: Note that at most 
times, for example, T = 41, there are points near 0 and near 1. As indicated, 
the time evolution is under a Hamiltonian with mode truncation, but 
which, for the remaining modes, contains the spin-up-spin-down couplings 
of  Eq. (2.1). The points near 0 and 1 on the graph therefore mean that 
there are initial boson states such that, starting from spin up, they evolve 
to states that are almost entirely spin up at time 41 (this would correspond 
to a point near one, i.e., Br has an eigenvalue near one). In addition, there 
are other time-zero boson states that leave the initial subspace almost 
entirely and decay to the spin-down state. These are the eigenfunctions of 
B r with near-zero eigenvalues. ("Near" in Fig. 1 means a separation well 
below 10-3.) The plotting of the spectrum of B r  for many values of T on 
the same g r a p h - - a n d  the dotted line connecting eigenvalues at successive 
t imes--does  not reflect the time dependence of any particular state. It is 
just that it is computat ionally convenient to generate many such spectra. 
Each T value plotted represents a different possible experiment. The 
remarkable feature shown is that there are usually such states. It is not 
exceptional to find "special" states. 

Figure 2 shows the case of three-boson modes. Because the dimension 
increases rapidly in the tensor product,  we take boson number cutoffs to be 
only 4, 3, and 3. The frequencies co are respectively 0.1, 0.9, and 1.1, while 
fl = 0.2 in all cases. The other parameters take the values e = 1 and ,3 = 0.5. 
All points shown correspond to eigenvalues of Br. Eigenvalues are now 

Fig. 2. Three-boson special states. The circles have the same interpretation as in Fig. 1. 
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even closer to 0 and 1 than for the one-boson case and in fact the density 
of eigenvalues near the extremes (0 and 1) appears to be greater than at the 
intermediate values. 

For many, but not all, parameter values "special" states could be 
found. Exceptions can be generated, for example, by taking a single mode 
with co = 2; decay is substantially suppressed and "special" states for decay 
are not available. From the graph it can also be seen that "special" states 
are absent at very short times. This is a phenomenon related to dominated 
time evolution. We do not consider either absence to be a difficulty for the 
theory of ref. 1 and will explain below. 

Remark. Some "special" states for nondecay are artifacts of the 
truncation, which in practice is an elimination of the coupling between 
N-boson states and ( N +  1)-boson states in the Hamiltonian. This can be 
seen by examining the actual "special" states and noting that in some cases 
they have large components near the cutoff. However, "special" nondecay 
states without this defect (as in the example given below) are also plentiful. 

5. RATIONALE FOR THE "SPECIAL"  STATES 
IN THE S P I N - B O S O N  MODEL 

Although we are pleased to find this abundance of "special" states, the 
absence of an analytical demonstration is a drawback. For this reason we 
report further numerical investigation. 

An instructive exercise is to look at the actual "special" states, the 
eigenvectors of BT having near-zero and near-one eigenvalues. These are 
time-0 boson states having the property that at time T the spin state is all 
up or all down. In Fig. 3, we show two of the "special" states, the upper a 
"special" state for decay, with eigenvalue B r near zero, and the lower a 
"special" state for nondecay, with the eigenvalue near I. The abscissa is 
vector label, the first (left) half being 1+ ) | [k),  k = 1 ..... Ncutorr, and the 
second half being [ -  ) @ Ik),  with k in the same range. The ordinate is the 
absolute value of the amplitude for the state along the particular Hilbert 
space direction. Note that neither "special" state is large near the cutoff. 

By applying e x p ( - i H t )  to the initial state, one can watch it evolve, 
and in Figs. 4a and 4b we show the time development of the "special" state 
for decay. As a function of time, amplitude sloshes back and forth between 
the boson modes of the spin-up Hilbert subspace and those of the spin- 
down subspace. Representative times are shown. Notice that many boson 
modes simply do not participate. The "sloshing" involves a limited part of 
the Hilbert space. This is true for both the "special" state for decay 
(eigenvalue zero) and for nondecay. Except for the particular time of 
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Fig. 3. "Special" states for decay (upper figure) and nondecay. These are eigenstates of B r 
for T ~ 3 3 .  The 6 4 x 6 4  Hamiltonian (and thus the cutoff) is the same as that for Fig. 1 and 
its parameter values are given in the text. The initial state is entirely spin-up and therefore 
confined to the left entries in the figure (whose abscissa is vector label, as described in the 
text). Only the absolute value (N.B.: not its square) of the vector is shown. 

"specializing," there is generally amplitude on both sides. Although space 
considerations prevent display of the time development of the nondecay 
"special" state, I can report that throughout its evolution it does not grow 
large near the cutoff. 

I believe that the limited use of directions in the Hilbert space plays 
a role in the successful search for "special" states in this model. The Hilbert 
subspaces associated with the initial and final states are each half the total 
Hilbert space dimension. Therefore with respect to parameter counting this 
is a borderline case. It seems though that by virtue of the particular 
dynamics there is less than the maximum spreading in Hilbert space. The 
initial vector remains in a small subspace 3 and the specification of the final 
space has a particular relation to that subspace, allowing exceptional or 
nongeneric "special" states to exist. This good fortune arises because both 
for the dynamics as well as for the characterization of the special states the 
same operator is involved, namely az or, equivalently, the projection, P. 

This is a kind of quantum localization. The relation of quantum 
localization to two-time boundary conditions was discussed in ref. 6 (see 

3 Strictly speaking, dynamical evolution under a unitary e x p ( -  iHt) always leaves the dimen- 
sion of the image unchanged. It is only when the overlap with less particularly defined 
subspaces is examined that the wave function "spreads." In effect, it is coarse graining that 
increases entropy. 
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Fig. 4. Snapshots of  an evolving "special" state. Each time step is 0.196 in the units of the 
model and full decay occurs after 170 time steps (T~,33) .  The initial state is that shown in 
the upper portion of Fig. 3 (so this is a special state for decay). (a) From the top, the absolute 
values of the vector coefficients are shown after 2, 10, and 120 time steps. Note that by time 
step l0 about half the probability has moved out of the spin-up state and in subsequent time 
steps sloshes back and forth. (b) Results after 168, 170, and 179 time steps. 

also ref. 14). The analogous conclusion could be reached for classical 
mechanics as well: If a system's evolution is confined to a small torus, the 
two-time boundary value problem will have many or few solutions, 
depending on whether the final conditions are on the torus or off it. 

Another clue is a refinement of the observation on the number of  
boson states involved in the "special" states. The initial state, which is all 
spin up, is expressible in terms of  the eigenstates of  H. Since under time 
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Fig. 5. "Special" states for a 32 x 32 random Hamiltonian. The space of  initial states is 
defined to be the first 16 dimensions of the Hilbert space. 

evolution it does not spread by much, then it did not involve many boson 
states at time 0. In other words the eigenstates of  the full Hamiltonian do 
not (significantly) involve many boson states and at the same time, using 
only relatively few of  them, one should be able to form a linear combina- 
tion of unit norm in the half of the Hilbert space defined by P. This was 
checked taking eigenfunctions of H with eigenvalues near one another and 
asking whether their projections with P could be used to build vectors of 
unit or zero norm. The answer turned out to be that if one used about as 
many vectors as the width of  the "special" states, one could approach zero 
or unit norm closely. 4 

As a further check we looked for "special" states of  a random 
Hamiltonian. It was produced by generating an N x  N array of random 
numbers uniformly distributed between 0 and 1 and adding this array to its 
own adjoint. When the first N/2 dimensions were arbitrarily designated 
initial states we actually found no shortage of special states. See Fig. 5. If 
instead we took fewer dimensions for the initial space, then the nondecay 
"special" states disappeared (Fig. 6). This is consistent with parameter 
counting. (61 What is remarkable is that the same reduction of  what is 
considered to be the initial state space does not destroy either class of 

4 Mathematically,  the search was based on the following: Given a collection of  vectors ok, 
k =  1 ..... n, the norm of the largest and smallest vectors constructable as ~,kakvk, with 
5"k lakl -'= 1, is given by the largest and smallest eigenvalues of  the n x n matrix whose jk  
component  is given by v~.vk. 
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Fig. 6. Same Hamiltonian as Fig. 5, but now only the first 10 dimensions are considered to 
be the initial states. 

"special" states for the sp in -boson  model. In Fig. 7 we show eigenvalues of 
Br for the one-boson Hamil tonian  used in the earlier figures when the 
initial condit ion space is only considered to be the first 24 dimensions, 
rather than the 32 dimensions shown earlier (32 being half the total Hilbert 
space dimension).  Thus the sp in-boson  model gives "special" states even 
when parameter-count ing arguments  mitigate against them. 

Fig. 7. The 64-dimensional one-boson system of earlier figures, but with the initial states 
defined to be only the first 24 boson, spin-up dimensions. "Special" states are evident despite 
the reduced dimension. 
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eigenfunction of the one-boson Hamiltonian used in previous 
illustrations. 

The degree to which evolution spreads the wave function can also be 
gauged by looking at the eigenfunctions of the Hamiltonian. In Fig. 8 we 
show an eigenfunction of the one-boson Hamiltonian. This shows 
remarkable nonspreading of amplitude and is typical of the other eigen- 
functions. By contrast the random Hamiltonian eigenfunctions draw 
amplitude from all the original Hilbert space directions. 

6. D I S C U S S I O N  

Several questions will be addressed. First there are technical matters, 
regarding the present results and their possible extension. Then there is the 
use of these results to support the quantum measurement theory of ref. 1. 

At the technical level there are problems that tend to plague computer 
derivations of decay. In particular, there are plasmonlike collective 
modes t~5) that lead to incomplete decay or early recurrences. These also cut 
down on "special" state possibilities. The physical significance of these 
modes is not at present clear. 

Another issue is the relation between the existence of "special" states 
and quantum localization/6) Under reasonable physical circumstances, 
parameter counting suggests pessimism for the existence of "special" states. 
However, when wave functions are confined to relatively small subspaces of 
Hilbert space--and when these subspaces are those one would naturally 
use to characterize physical boundary conditions--the parameter counting 
is transcended and solutions to the two-time boundary value problem are 
available. 

822/77/3-4-28 
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A technical issue with physical significance concerns a spin-boson 
model with three spin states. By considering one spin state ( |  bosons) to 
be the initial state and the other two to be distinct decay channels one can 
address the following question: Can a system with two (or more) decay 
channels find "special" states so as to decay only into one or the other 
channel?~ 16~ This is in addition to the question of whether there are enough 
local degrees of freedom to "specialize" the decay to a small time interval 
(quantum jumps). Exploring this numerically requires large matrices and 
we do not yet have definitive information. We have found "special" states 
for decay or nondecay (the latter in defiance of parameter counting), but 
numerical exploration so far has only turned up states that concentrate 
their decay up to about 90 % into one channel. 

In the Introduction we mentioned the relation of "special" states to 
wave function entanglement. This can be realized by allowing our system 
to model a capture/noncapture situation. One particle passes near another 
and they can either bind or continue their separate ways. In both cases 
there can be excitation of degrees of freedom that are internal or in the 
environment, e.g., the electromagnetic field. With typical or bland initial 
conditions a quantum calculation will predict amplitude for both capture 
and noncapture, so that the final wave function is entangled. Obviously, 
that could be avoided with "special" states. But one can go beyond this and 
discuss disentanglement. Two particles bound in an s state are entangled. 
Generally, if one sends an energetic photon at them it can break up the 
state--with nonzero, nonunit probability. Thus, with bland initial condi- 
tions one does not disentangle, but only becomes more deeply mired in 
sums of products. However, with further, perhaps environmental, degrees 
of freedom and the existence of special states, the disentanglement can be 
implemented with what we termed "pure quantum evolution." The 
"special" state in this case would be the (time-reversed) end product of the 
capture event described above. 

There is a feature of the "special" states displayed in Sections 4 and 5 
that is different from what one ordinarily thinks of as decay states. The 
system passes from up state to down state and back again. If the down 
state and its boson excitations truly describe a decayed situation, the return 
to the up state would be impossible. Often decay modes have translational 
degrees of freedom that remove them from the region. In fact, in using the 
spin-boson model to describe Josephson junctions, we find that the 
possible return to the original state is not only physically possible, but is 
one of the features of the model (coherent oscillations, etc.). If one wishes, 
however, to think of this as a model for other decay systems, then the 
boson modes we deal with are either nontranslational or do not escape 
from the scene very quickly. In either case, one must justify the existence 



Special States in the Spin-Boson Model 943 

of these modes in a physical application. It should also be noted that even 
nontranslational modes can lead to decay (e.g., as in ref. 13) because of a 
multidimensional final state that does not coherently recombine to the 
initial state. 

We have mentioned two instances where "special" states were not 
available: at very early times, and when the model parameters were such 
that decay is severely inhibited, even at long times. In both cases the model 
is not describing the physics of an observable decay. As is known ~71 from 
the analysis of dominated time evolution (the so-called quantum Zeno 
effect), observing or measuring decay at early times involves strong 
coupling of the decaying system to the apparatus that does the measuring. 
Therefore if one actually were to see decay at those early times, a fully 
quantum description of that decay would involve the degrees of freedom of 
the apparatus. In effect, this would mean that the degrees of freedom 
included in our numerical calculation are n o t  all those that are available 
and in practice not the important ones for decay. Correcting this omission 
would enable decay and presumably "special" states as well. Similarly, 
when model parameters are used in which decay is incomplete and 
inhibited it also does not describe the physics of observed decays and more 
modes are needed both for the decay and for "special" states. 

The investigation described here can easily be taken up on other 
model systems, for example, rotors, whose localizing properties ~sl suggest 
the presence of "special" states. 
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